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AbIIrIct-The response of an elastic half space to a realistic model of faulting is considered. Adislocation
is assumed to be developed al01ll a line of finite length and then moves nonunifonnly aJona an inclined
plane (fault) surface. Analytical solutions to the surface displacement in the form of cloubIe infell'lls are
derived by Capiard De-Hoop technique. Nature of wave arrivals at the surface are discussed both in case
of a decelerati1ll and an accelerating source. First motion responses are obtained near different wave
arrivals by a limiting process.

1. INTRODUCTION

Although exact solutions for tbe response of an elastic half space to uniformly moving sources
are known for quite some time (see for current bibliography, Gakenheimer and MikIowitz[l])
only recently Freund [2. 3] discussed the wave motions expected in case of a non-uniformly
expanding line load, Beitin[4}, Blowers [5] and Roy [6] obtained the displacement field in an
elastic balf space for some special types of nonuniform motion, For accoustic case the problem
bas been considered by Agarwal and Ablow [7] and Strooae[8],

Currently there bas been increasing interest in theoretical elastic motions near a fault in
view of possible appJicatioBs in the design of earthquake resistant structures in close proximity
to faults. Two dimensional kinematic fault models have been used by Boon and Zobach[9. 10]
and Niazy(11) etc. to explain the stroDlmotion recordiDpof earthquakes. RadiationpaUern of
uniformly propapting faults has been considered earlier by IC.nopottand GilbertU21 and
Savage[13]. Near field simulation method using aumerical intearation of a point source
dislocation foUowing Hask.eU[J4] has been used by otbers[J5, 16] to explain the strona motion
acceJeroll'8ph data. Theoretical models of seismic source meebanism viz. a distribution of
single or double couples or dislocation over a finite area and movina with constant velocity has
long been used [17] to estimate the parameters of a fault, e.g. velocity and JeDllh, by comparing
tbeoretical amplitude spectra witb those of actual seisJDOll'1lPhs. Another line of attack. is to
assume earthquake source models as dynamic cracks[J8, 19].

In all sucb works mentioned above, the source expands with uniform velocity. However the
motion at the focus of a shallow earthquake is more likely to be nonuniform because of
heterogeneity near the focus. Thus a nonuniformly movina source is a more accurate represen­
tation of the mechanism of an earthquake than a uniformly movill8 source. Hence we represent
the seismic source by means of dislocation over a finite JeDllh which then moves nonuniformly
perpendicular to its initial position along an inclined plane fault surface. Analytical solutioDs to
tbe displacement on the surface of an elastic half space are obtained in the form of double
integral over finite ranges. It is observed that theoretical seisJllOll'llDs are expected to ditter
considerably from tbose of a stationary or uniformly moving sources.

2. MATHEMATICAL FORMULATION

We consider a homogeneous elastic half space and take the earthquake source to myolve a
plane (fault) surface across which displacement discontinuity suddenly arises a10DI a line of
finite leDJth whicb then moves perpendicular to itself along the fault surface. We introduce a
right handed coordinate system ('10 '2, '3) (FIg. 1) to describe the source system such that ".0
represents the fault plane with 'I taken along the direction of motion. The other coordiDate
system (x. Y. z) is chosen sucb that z =- h represents the free bounding surface of the elastic
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• x

F'II. I. Coordinate system.

half SplICe and x-axis is taken aIolll the strike of the fault plane. The transformation rule for the
co-ontiMte systems

(1)

where A • [."lis the (3 x 3) trlDSformation matrix.
In terms of the slip.. A and dip anale 8 we have

(2)

Let (II" "2. II,) and (II.V. w) be the components of the displacement u aIolll <'10 l2. ',land
(x. y, z) respectively. Let the eardKtuake source be represented by a prescribed tanpntial
displacement discontinuity across the fault plane '3 ""' O. We take

(3)

where [III] istbe jump in the ,.-component of displacement across '3""' O. H(t) is Heaviside unit
function andb is the extent .... 'Taxis.

For our purpose it is sufllcient to consider the dislocation given by

[lit] = HUI - S(t))HU2)H(t). (4)

Then the displacement field in case·of dislocation as given by (3) can be written from those of
(4). We note that no resaictions need be imposed on S(t) except that it is monotone and
S(O)=O.

The body force equivalents ., with components (Fh F2, F3) in the «(h (2, (3) coordinate
system for the dislocation given by (4) can be written as (Burridae and Knopoff[l2]).

F I ""' - ".H('t - S(t)}H('2)6'('3)H(t), F2 =O.
F] =- ".8('1 - S(t))H('2)8U3)H(t). (5)

Roy[20] bas given a general method of findilll the surface displacements in an elastic half space
associated with arbitrary force system r. The use of two different cartesian coordinate systems,
one of whicb doscribestbe source condition and the other is chosen such that it is perpendic­
ular,tothe,...... surface. is found to be specially suitable for obtaining the displacement
field in case of dislocation across an inclined fault surface. FoUowinal20] the transformed
displacement at the surface z =- h can be written as

0(- h) ""' up(- h) + os(- h)+ OSH(- h), (6)
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where ex, e, and ez are unit vectors along x, y and z axes respectively, and

A =[)p( +Ep." - iGp{p,

C =DsTl - Est.
-kw -kw -A:D =FI all +F2 al2 +F3'''aI3,

G =Fl
kwa31 + F2kwa 32 + F3kwa33,

'p =(g2 + .,,2+ p2/a 2)112, (Re({p) > 0), 'S =(g2+ ,,2+ p2/112)112, (ReUs) > 0),

a2
,", (A +2p,)/u, 112 =p,/u,

F(g, .,,) =(2e2+ 2,,2 + p2/112)2 - 4(t2+ ."2),,.{S,

(F/"", F2A:11I, P3kw )=L-f:f:f: (Ft.F2,F3)e-I(A:l"+"'2+a(J)-"'d,.d'2 d'3dt. (8)

A, p, and u are Lame's constants and density of the medium. D,., Ds etc. are obtained from D
etc. after tint cbanJing over from variables (Ie, II, I) to (l,,,, () throop the relation

(9)

and setting ''"' - i{p and , '"' - i{s respectively.
The transformed surface displacement for the given dislocation can be obtained from (6H8)

after obtaining the values of [)P, Ds etc. for the body force equivalent as given by (5). They can
be shown to be of the form

where

Np =L- f- f- P(l, '11' p) e l(,x+"Y)-Z(f2+.,,2+p2/.2)11L.,.,. df d." d'T,o _ _ kpJlp

Ns =L- f- f- Q({. '11' p) e l(,x+"v)-Z(f2+.,2+p2/112)1I1_,.,. df d" d'T,
o - _ ksJls

x =x - S('T) cos A, Y =y- S('T) sin Acos 8,

Z =h +S('T)sin Asin 8.

(lOa)

(lOb)

(l0e)

Complete expressions for P(f, ", p), Q(f, ", p), kp etc. are given in Appendix 1. The terms kp,
ks etc. in the denominator arise due to H('2) term in (5). The apparent sinsularity at Icp '"' 0,
ks =0 etc. could be avoided if we use Heisenberg's delta function(2t).

3. INVERSION

Evaluation of the integral of the type (lOa) and (lOb) will be done by Capiarcl De-Hoop
technique. Following the method of Gekenheimer and Miklowitz(1) we make the De-Hoop
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where

f =I!..(q cos 4> - w sin 4»,
a

." =J!.(q sin 4> +w cos 4»,
a

(11)

The intqration path which is along the real q-axis is deformed to Capiard's path, viz.

at =aT - iqR + Z(q"+ w" + 1)112,

at,. a1' - iqR + Z(q" + w" + a"lfl")II2, (12)

depenclina on wltether we coalicier Np or Ns-
We note that in trauformiaa from the real q-axis to the Capiard's padl in the q-plane. as

remarked earlier. kp ,. O. "1' - 0 etc. in the denominator of (lOa) and (lOb) are not poles. On
performiaa the inversion. the surfacedilplacement can be written as (see. for detail. Roy[22] in
a similar case)

0(-11)" up(-II) + us<-II) + uSH(-II)+ usp(-II),

where

.,(-h)- [' H(t-1'-plV/)I,d.,.,

p =(X" + y"+ Z"}//",

a f-'2I, ..V 1U M,(q" tIIt'!..q," +OIl" +dl)l/2 d.
11 P --'2

j has the values P. S or SH;

dl =1 for j =P }

= a/fl for j =S or SH

and

(13)

(14)

(15)

Also

Vp =a, Vs =VSH ={3.

usp(-h) =i'[H(t -.,.-= -Z~-~Y') -H(t-r-i)]H(: -~)lspl d.,.

+l' [H(t-"'-j)-H(t-.,.-~~-~Y/2)J H(~-!)Isp"d"', (16)

where

(17)

and

_ a f-'2 ;"!!J<9Ir". !RtXq2 + lI'le2 + a2//!")I/2 cos !I'd;
15

,.2 - - 1t'
zp1U --'2 [It'" .",1. .'fjz (iP<t _1')ZI)]112 . (18)

a SID .,,+-:2' 2-
P P

Meaam, of the diferent symbols used in (15)-(17) are given in Appendix 1.
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4. FURTHER REDUCTION OF THE SURFACE DISPLACEMENT

The surface displacements as given by (14) are written in alternate forms which are suitable
for further reduction. Thus

rt -<l2%+l32)II2/Vj

Uj(-h) =Jo [H(l'I- S(T)+[Vl(l- 'd- el- e32] 112)

-H(l'I- S(T)- [Vl(l- d- el- el]II2)]lj dT,

where eh e2, e3 are obtained from inverting (1) and setting z =- h. Thus

el =x cos ,\ + Ysin ,\ cos 8 - h sin'\ sin 8,

e2 =- x sin ,\ + yeas ,\ cos 8 - h cos ,\ sin 8,

e3 =y sin 8 + h cos 8.

(19)

(20)

Note that from now on, unless otherwise stated, (eh e2, (3) refer to points on surface z = - h.
The region of support for tbe T.integration is bounded by the curve

(I)

(II)

el =S(T)- [Vl(l- d-el- el]ll2,

el =S(T) + [Vl(l- d- el- el]ll2.

(21)

(22)

Fipres 2(a-d) show the curves I and II as l' varies from 0 to (1- U22+ el)II2/V,). The curve
I is a monotonic increasina function as l' varies from 0 to (1- (el+ ,l)II2/Vj ). Curve II bas
exttemum at points where

(23)

vanisb. Also we bave

(24)

tDependiDa on the nature of the movm, source. the curve II may have a siDale maximum at
el" ,t> (or equivalently at 1''' 1'1 or I- t1) or both a maximum at 'I - ,t> and a minimum at
CI" ,t>- (i.e. at l' - 1'''' or I- tT-). We consider an accelerating source, i.e. S(T»O. In this
case it is easDy seen from (23) if (aCI/8T)o> 0 i.e. if the initial velocity $(0) (in aenerallP'eater
than Vj) is sucb that (a'I/8T)o> 0, then the curve II has a maximum at CI" ,t> (1''' TT) (FI&. 2&).
WhDe if (aCI/8T)o<O i.e. if the initial velocity $(0) (in aeneral less than Vi) is such that
(aCI/8T)o<O, the curve II bas either no extremum as in FII· 2(b) or both a maximum at CI"" CT>
and a minimum at CI "" 'T>- (i.e. at T" TT- or t "" tT-) <Fig. 2c. d). In the latter case the
acceleration of the source must be rapid enouab such that a2'1/8T2 vanishes at least once in
0<T<t-ul+'3~II2/Vr While for a deceleratina source (i.e. S(l")<O) the curve II bas a
maximum at CI- 'T> if (a'I/8T)o> 0 and no extremum at all if (aCI/8T)o<O.

From the above discussion and from FII. 2(a-d) it follows that l' as Jiven by (22) is multiple
valued in 'T>- < CI < 'TI. when both (11 and (TJ- exist. The seaments of the curve II are then
denoted by T" 1'12 and 'T "" Tj3 « 1"12l for CI in UT>-. CT» and simply by 'T - 'T12 for values of CI in
(CT>, &11) if only one maximum viz. CT> exists. The rest of the Seplents of the curves I and II.
where T is single valued. is denoted by T" 1'/1.

In case of head waves (i.e. asp) the nature of surface displacement depend. critically on the
existence of the maximum x .. xl,. and minimum x .. xII of the upper curve of

[{
a2 112}2 ]112

X =SeT) cos'\ ± aCt - 1') - (h + SeT) sin'\ sin 8)~- 1) -(y - SeT) sin'\ cos 8)2 .

(25)
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Fig. 2. Region of support of II- (a) A single maximum til exists, i.e. in case of a source witb iRitiai velocity
sucb that S(O) > VI; (b) No extremum exists; (c,d) Both a maximum ,r. and a minimum ,r.- exist i.e. in

case of an accelerating source such tbat S(O) < VI and acceleration is rapid enough.
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Similarly {. ={II and {I =(;~ are the maximum and minimum, when they exist, of the
upper curve of

r = S( )+ It-'T)(h + S('T)sin'\ sin 8) _ r 2_ r 2

J
'12

101 'T_ (J 1)112 102 103 •

'$-;;
(26)

The division of the curves (25) and (26) into different segments ('T ='TSPh 'T ='TSP2, 'T ='TSP3)
and ('T ='TBh 'T ='TB2, 'T ='TB3) is done exactly similar to the curves (21) and (22).

On close examination of Figs. 2(a-d) and similar figures connected with the head wave we
can write the surface displacement as

U(- h) =up(- h) +us(- h) + USH(- h) +usp(- h) (27)

where, for j = P, S or SH

Uj(-h) =[H('I + (11)- 0('1- max'" UTJ, (11»] f" H(t - 'T-{~;)Ij d.,.

r l2
( P)-[O({.-max'" ({TJ,{fI»-H({I-l1l)] Jo H t-.,.- V

j
Ijd.,.

- [O({. - min'" ({TJ*, {fl» - O({I - min'" ({TJ, 11.))] f"/2 H (t - .,. -V)lj d.,., (28)
"/) j

and

(29)

The fourth and fifth terms in (29) namely USI and U52 denote the expressions on the r.b.5.

of (27) with integrand Is replaced by IspIH(Rlp - /3la) and Isp2H(RJp - /3/a) respectively.
In (28) and (29) the following meaning is attached to the symbol:

(30)
0('. - max'" (l'TJ,l1.» =H(,. - (TJ)H(~)

=H(,.- '1.)
if {TJ =max" ({1i,{1I)
if l'11 =max" (l'1i,{1I)
or l'TJ does not exist.

Similar meaning is given for 0({1 - min'" ('TJ, 11.» etc. Note the additional factOT H(Lj )
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whenever the starred member (viz. (TJ above) is to be considered. Also we have

,.0 _ [V2t2 r 2 r 2]112
!ojl - j -!o2 -!o3 ,

[
a2 1/2 2 ]1/2

x~p = (at - h (;82 - 1) ) - l

Meaning of different symbols in (28) and (29) are given in Appendix 2.

(31)

5. NATURE OF WAVE ARRIVALS

The part of the surface displacement as given by (28) includes, besides the contribution from
body waves namely P, 5 and 5H wave at (. =i: (/, =i: [Vlt2

- (l- 'l]'/2 for j =P, 5 or 5H or
equivalently at t =«(12+'l +(l)'I2/v/ =(x2+ y2+ h2)II2/V/ the contribution from the conical
waves at

(, =(" (or t =t') and (I =".* (or t =t'*),

(for iJ • P, 5 or 5H) at places wllel'e 4 > 0 and 'T/ > 0 respectively.
Similarly (29) shows that the held wave, 5P, arrives at

while conical ....waves arrive at x • xl.. (or t • tl..) and x· xt, (or t ·/D) at places where
LSI' > 0 and 1'iP > 0 respectively. Head waves and associated conical waves arise due to the
presence of surface and are absent in an infinite medium.

Alternatively from (22) and (23), conical P or 5 waves can be regarded as the envelope of
elementary P or 5 waves as the source moves. Thus

T =5(1')+ V/(/-1'),
'" 5'(1')

(32)

represents the conical P or 5 waves at time t for j =P or 5, in terms of the parameter T. The
representation (32) shows that the necessary condition for the existence of conical wave is that
$(1') > Vr This implies that the source must move supersonically with respect to the longi­
tudinal wave velocity of the medium in order to generate a conical P-wave. Similar remarks
hold for conical shear wave when the source must move supersonically w.r.t. the transverse
wave velocity. The reaions of existence and arrival times of P, 5 and the associated conical
waves can be obtained easily by the in~tion, with the surface z = -Ja. of the wave fronts in an
infinite medium(Pis. 3a, b)whichcan be easily constructed by drawq the envelopes of elementary
P or 5-waves as the source moves.

We note that" · "'It (, ·(I, and (, =(IT or equivalently t =tBO, t =tl and t =tl* do not
represent any wave arrivals. This win be evident if instead of source at a depth h, we consider
dislocation starting from the free surface and find the displacement inside the medium. The
corresponding time arrivals are obtained from the present case on simply replacing h by z. In
that case it is easily seen that t = tBO, t =tl and t = tl* do not represent any wave fronts since
they do not satisfy the eikonal equation.

Phases expected at any station on the surface in case of non-uniformly moving sources
differ considerably from uniformly moving sources. This can be easily seen from a look at the
table below.



First motions from nonuniformly moving dislocations

-----.::::::::~L

(a)

763

L
(b)

Fig. 3. Wave fronts in an infinite medium. (a) The case of a source L movilll noaUDiformly with startina
velocity greater than the loJllitudinai velocity of the medium. P. S. CP and CS repRlCIlt ioDIitudinaJ.
transverse. conical P and conical S wavefronts respectively. (b) The case of a rapidly acceIeratiIIa IOUI'Ce L
startiDa with velocity less than the transverse wave velocity of the medium. P. S. CP.. CP2. CS.. Cs,
represent loJllitudinal, transverse, first conical P. second conical p. first conical S aDd second conical S

wave fronts respectively.

In Table 1 RoJPo and R* /p* denote the values of R at 'l" =0 and 'l" ='l"lp respectively. The
condition for the existence of conical waves can be summarised as follows: for both an
accelerating and decelerating source, if the initial velocity is greater than the representative
velocity (i.e. longitudinal or transverse). first conical P. S or SP. wave always exist. Second
conical P. S or SP waves do not exist in case of a deceleratiDa source. They are always
preceeded by first conical wave. They exist only in case of an acceleratiDa source &lid wheIl the
initial velocity of source is less than the representative velocity (i.e. loDlitudiMl or transverse
as the case may be) and the acceleration is rapid enough.

In particular for a vertical fault plane (i.e. 8 =,,/2) with the source movina with a constant
velocity V at an angle A to the strike direction. the arrival times and region of existence of
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Table I. Phases expected at the surface in case of moving source

Supersonic Source
Non-uniform Uniform Subsonic Region of

motion motion source existence

First conical P Conical P Lp>O
P P P All station

Second conical P 'fpC >0

First conical SP Conical SP Ro>!! and Lsp>O
Po a

SP SP SP Ro>!!
Po a

First conical S Conical S Ls>O
S S S All station

Second conical S 'fSc>O

Second conical SP R* >!! and 'f~p>O
p* a

Rayleigh Rayleigh Rayleiab All swion

conical waves as obtained from (28) and (29) are found to agree with those of Roy{23], derived
in a different way.

6. FIRST MOTIONS

The expressions for the surface displacements as given by (28) and (29) are in the form of
double intesraIs over finite ranaes. As such, computation of theoretical seismoarams for any
dislocation model can only be done with the help of a computer. However some idea about the
nature of surface displacement can be made if one computes the first motion approximations to
the surface displacement near diferent wave arrivals which can be easily done by a limiting
process used earlier by Roy [221 in case of finite sources.

The surface displacement near P or S·wave arrivals is obtained, from (28) as

(33)

where

We first consider the case when the source is moving subsonicaUy (i.e. initial velocity less
than S·wave velocity) then the surface displacement near p. or S·wave arrivals, as obtained
from (33), is

where

{II} = jump of II at t = l/li(1') = l' +-v;
::::..!!.-M ( 0) h +S(1') sin'\ sin 8 ,

21f'p I tlin P

ia(t- 'T)R
q;,. :::: p2 ,

(34)

(35)

and I'll is the root of t - t/I,(f'):::: t - '1' - pi VI:::: O.
We consider the case when the source starts with finite velocity. In this case. let S('T) have a

Taylor's expansion near f' :::: O. Then we have

(36)
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Then for sources moving initially with subsonic speed. the displacement near P or 5 wave
arrivals is obtained from (33H35) as

(37)

where

(38)

In case the source is moving supersonically i.e. if the initial velocity is greater than P-wave
velocity. then for «(15(0)/<1>0Vj» < I, assuming again 5(or) has a Taylor's expansion near or == 0
the surface displacement near P- or 5-wave arrivals is again given by (37).

If 5(1') has no Taylor's expansion near T== 0, then let 5(T) has the following form near T== 0,
namely

S('7') == So'7''', So == constllllt(> 0), (39)

If n > 1. then (37) gives the surface displacement near or == Pol Vj after setting 5(0) ==.0 in (37).
Let n < I, in this case initial velocity is infinite, i.e. 5(0)-'00 as t-.O+ and we have

(40)

(41)

In this case for (I < 0, we get the surface displacement near t == Pol Vi from (33) as

(
Po)II"

(_ h) =- t-Vi ahM/(!lf' O)H (t _a)H(- , )
Uj (_ ~)i1" 21TPo VJ ~I •

PoVj

In case the source is moving initially with supersonic velocity then for S(O)l,'<Pul'J) > 1 or if
the source is moving with infinite velocity initially namely when S(or) =So.,", II < 1 then for
(I> 0 i.e. at places where conical P- or 5-wave exists, then surface displacements associated
with P- or 5-wave are obtained from (28) as

In this case the surface displacement near t == Pol Vj cannot be obtained by the limiting
process described above.

The surface displacement near first conical P- or 5-wave arrival, as obtained from third
terms in (28) and (29), is in the form

(42)

where {II} is given by (35) and f is obtained from the relation that orr + f is the root of
t-rJ:j(T)~t-,.-P(Vi=O.Now

f2
t - 'MorT + f) == t - tT -2tY(,.r)

since fll( orT) == 0 and tr =t/lJ("T)·

(43)
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Hence from (42) and (43) we get as t -+ tT+

(44)

Similarly the surface displacement near the arrival time of second conical P- or S-wave is
given by

(45)

Near the cusp of 1- .,(-r) = 1- T - pi VJ = 0, where the two extremum T = T1 and T = T1*

coalesce. with the common value of I and Tbeing denoted by tF, TF respectively. the surface
displacements. can be wrttlen as

(46)

In case of the bead wave, the surface displacement near its arrival time is given by

(47)

where

and TSPI is the root of t - I/t.(T) =o.
Followilll Roy[22], (47) can be written as

usp(- h):II (Gsp),..o Lt r SP1
(I - Isp - I/tsp(T) + tsp) d.,. H(I - Isp)H(Ro_!)

~.~Jo ~ a
"sp\-oO+

where

Exactly similar to the previous case we get

when S(.,.) has a Taylor's expansion near .,. =0 and

when S(.,.) =So"''' near .,. =0 and

'., 1/2

L - x cos A+ Y sm A cos u + . • . a( 1 1 )
- - ( 2+ 2)112 sm 1\ sm Q]-~ .

aX Y IJ a'

(48)

(49)

(50)

(51)

(52)
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Exactly in a similar way the surface displacement near the arrival times of first conical head
wave is given as

(53)

The corresponding result near the arrival times of second conical head wave is obtained
from (53) on replacing tIp, 'T~ and H(L) by tJ1, 'T}p and H('T~p) respectively.

At places where the two conical head waves coalesce, the first motion approximation to the
surface displacement is given by

(54)

where (t~, 'T~) are the common values of (t~, t~) and ('T~, 'T~) respectively at the cusp of
t - "'sp("') = 0 and 1/I"('TsP) = (d3/d.,.3)",('T).

7. DISCUSSION

It is seen from Sections 5 and 6 that the surface displacements in case of a nonuniformly
moving source differ from those in case of a stationary source both in number of wave arrivals
and amplitude of different phases. Thus if DJ (j =P, 5 or 5H) be the surface displacement
associated with first motion of the P, 5V or 5H wave arrivals in case of a nonuniformly
expandina dislocation and [ujlo be the corresponding quantities in case of a stationary source,
then from (37)

where, for j = P, 5 or 5H

A1j= 1 = 1

[
1- (.$(0)] 1 5(Olcos f '

PoVj Vj

where f is the anJie made by the radius vector joining the observation point and initial position
of the source with the direction of propagation.

Thus the effect of motion of the source is to multiply first motion responses by a scalar
factor Mj which depends only on the initial velocity of the source. A similar factor Mj was also
obtained by Savage[13] in connection with a source movina with uniform velocity. Since the
modulation factor ~ is positive for subsonic source and the nodal plane determination depends
only on the sip of initial P motion, the motion of the source does not alter the nodal position.
As the first motion responses are uneffected by the acceleration or deceleration of the source,
to analyse the nature of motion one needs to study the amplitude of body waves after the first
arrivals.

In case of a source moving initially with infinite velocity, a change of pulse shape is
expected near body wave arrivals. Thus for a source moving initially with infinite velocity as
seen from Section 6, the surface displacement near P, 5V or 5H wave arrivals varies as
(t-PoIVj)I/"H(t-PoIVj) while in case of a source startiDa with finite velocity it varies as
(t - Pol Vj)H(t - Pol Vj ). In case of a source moving supersonically (i.e. 5(0) > VJ) conical body
phases appear and near their arrival time the surface displacement behaves as (t - tr) I12H(t­
t1) where tf, is the time of arrival of conical phase.

We have presented a method for obtaining theoretical seismoarams for a particular earth­
quake source model, viz. gliding edge dislocation, in which finiteness and nonuniform motion
of the source have been taken into account. As eqn (7) is valid for any arbitrary body force
system, the present analysis can be used to obtain the surface displacement in an elastic half
space for other realistic earthquake source model, viz. skew dislocation, etc. incorporatina the
effect of actual motion of the source. Recently two dimensional dislocation models have been
used to explain accelerograph data of different earthquakes [9, 10, 15, 16]. In case of two
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dimensional dislocations the surface displacements will be expressed in terms of a single
integral instead of double integrals as in the case of three dimensional ones. It is hoped to
compute theoretical seismogram in case of two dimensional dislocation source models in some
future pUblications. Comparison of theoretical seismogram, following the present analyses with
phases of an actual earthquake may give a better evaluation of the relevant parameters, viz.
length, rupture velocity etc. associated with faulting.
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APPENDIX 1
Meanina of difercnt symbols used in (14) and (16):

M,(q,lII) - ~f..,,) [-2{,(fe. + "e,)+ i(2f2+2,,2+ (l2/1J2)e,1.

M.(q,lII) - k~1f. ,,) [(2f2 + 2,,2 + (l2/1J2)(fe. + "e,) - 2lW + "2),,,1,1.

(l2A
M",,(q, 1II) - IJZksJy<,l'+ f!Z) (1/1. - fe,).

F(f. ,,) - (2f2+ 2,,2 + (l2/1J~ _4(f2 + ,,2){,.CSo

E- (q cos4l-1il si.n4l). " -q sin 41 +111 cos 41.
,,. _ (q2 + 1112 + 1)112. ~ .. (q2 + 1112+ 0/2/1J2)112,

A,. - - 2lf11 cos Asin &+ 2«,. cos Acos &+ 2"es sin Acos 2& - i(,,1 + ,,.2) sin Asin 28.

As(E2 + ,,2) - - un's cos Asin &+ f(2f2 + 2,,2 + 0/2/1J2) cos Acos 8

+,,(2f2+2,,2 + (12/1'2) sin Acos 28 - i's(2,,2 +e) sin Asin 28

ASH" - i(,,2 - e) cos Asin &+"" cos Acos &+ lf1I sin Asin 2& - ECs sin Acos 2&.

k,.,. fcos A+" sin Acos &- iC,. sin Asin &.

k, z Ecos A+ " sin Acos &- iCs sin Asin &.

",.- -E sin A+" cos Acos &- 1(,. cos Asin &.

"s = - Esin A+ " cos Acos &- iCs cos Asin &.

Note that f. " as defined above is the same as E. " as lPven by (11) except for a factor pia.
The other symbols in (\S) and (17) are as fottows:

qp= ~[i(t - T)R + Z«t - d - p2/0/ 2)H2 cos ';1.

[
0/2(t - T)2 ] 112 .

IIIp = --:r-- I SIR r/I.p

R= [(x - S(T) cos A)2 +(y - SeT) sin Acos &)21"2,

Z= (h + SeT) sin Asin a), p = (R2+ Z2)"2,
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APPENDIX 2
In (28) L; (j .. P, 5 or SH) has foUowiDa values, dependina on the nature of movina source;
<a) -I +,.5(0)/(VJPo) if 5(1") has Taylor's expansion near 1"" 0 and 5(0) > VI-
(b) 'to if 5(0) is infiIIite aDd for a deceleratina source.
(c) T{, when both ,r. aDd ,rl* exist; (i.e. in case of an accelerating source with initial velocity either equal to zero or

less tban P or 5 velocity dependina on bavina the value P or 5) and 1"{ denotes the common value of (1"r, 1"r*).
The correspolldiDa values of LSI' are:

(a)

(b)

(c)

1 ;'(O)[x cos " + y sin" cos 8] '.' 8( 1 1)1/2- +.3 (2 2)112 - SIn" sm 'i'-~ax+y ., a

. . (1 1)1/2 xcos"+Ylin"cos8
- SID" Stn 8 j2-~ + a(x2+ y2)112

1"i,..

Also the values of LB are (a) 1"1 if aT exists and (b) l"B
C if both at and aT exist.

TF. Tjp and l"B
C denote the values of Twhere the function

have vanishinl fint and second derivatives respectively.


