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Abstract—The response of an elastic half space to a realistic model of faulting is considered. A dislocation
is assumed to be developed along a line of finite length and then moves nonuniformly along an inclined
plane (fault) surface. Analytical solutions to the surface displacement in the form of double integrals are
derived by Cagniard De-Hoop technique. Nature of wave arrivals at the surface are discussed both in case
of a decelerating and an accelerating source. First motion responses are obtained near different wave
arrivals by a limiting process.

1. INTRODUCTION

Although exact solutions for the response of an elastic half space to uniformly moving sources
are known for quite some time (see for current bibliography, Gakenheimer and Miklowitz[1])
only recently Freund[2, 3} discussed the wave motions expected in case of a non-uniformly
expanding line load. Beitin[4}, Blowers[5] and Roy[6] obtained the displacement field in an
elastic half space for some special types of nonuniform motion. For accoustic case the problem
has been considered by Aggarwal and Ablow[7] and Stronge8].

Currently there has been increasing interest in theoretical elastic motions near a fault in
view of possible applications in the design of earthquake resistant structures in close proximity
to faults. Two dimensional kinematic fault modeis have been used by Boore and Zobach([9, 10)
and Niazy[11] etc. to explain the strong motion recordings of earthquakes. Radiation pattern of
uniformly propagating faults has been considered earlier by Knopoff and Gilbert{12] and
Savage[13]. Near field simulation method using numerical integration of a point source
dislocation following Haskell{14] has been used by others{15, 16} to explain the strong motion
accelerograph data. Theoretical models of seismic source mechanism viz. a distribution of
single or double couples or dislocation over a finite area and moving with constant velocity has
long been used[17] to estimate the parameters of a fault, e.g. velocity and length, by comparing
theoretical amplitude spectra with those of actual seismographs. Another line of attack is to
assume earthquake source models as dynamic cracks[18, 19].

In all such works mentioned above, the source expands with uniform velocity. However the
motion at the focus of a shallow earthquake is more likely to be nonuniform because of
heterogeneity near the focus. Thus a nonuniformly moving source is a more accurate represen-
tation of the mechanism of an earthquake than a uniformly moving source. Hence we represent
the seismic source by means of dislocation over a finite length which then moves nonuniformly
perpendicular to its initial position along an inclined plane fault surface. Analytical solutions to
the displacement on the surface of an elastic half space are obtained in the form of double
integral over finite ranges. It is observed that theoretical seismograms are expected to differ
considerably from those of a stationary or uniformly moving sources.

2. MATHEMATICAL FORMULATION

We consider a homogeneous elastic half space and take the earthquake source to involve a
plane (fault) surface across which displacement discontinuity suddenly arises along a line of
finite length which then moves perpendicular to itself along the fault surface. We introduce a
right handed coordinate system ({, {», {5) (Fig. 1) to describe the source system such that ;=0
represents the fault plane with {, taken along the direction of motion. The other coordinate
system (x, y, z) is chosen such that z = — h represents the free bounding surface of the elastic
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Fig. 1. Coordinate system.

half space and x-axis is taken along the strike of the fault plane. The transformation rule for the
co-ordinate systems
X &
y|=AlL (D
z &

where A =[ag] is the (3 X 3) transformation matrix.
In terms of the slip angle A and dip angle § we have

Cos A -sina 0
A= (sin)t cos 8 cosAcosd —sind|. 2
sinAsind cosAsinéd cosé

Let (u,, 3, 43) and (u, v, w) be the components of the displacement u along ({i, {2, {5) and
(x, ¥, 2) respectively. Let the earthquake source be represented by a prescribed tangential
displacement discontinuity across the fauit plane {;=0. We take

[a) = H({i = SUNH ($) = H(G ~ DIH(O)—~ H(t - )] 3

where [i,] is the jump in the {;-component of displacement across {3 = 0, H(t) is Heaviside unit
function and b is the extent along {>-axis.
For our purpose it is sufficient to consider the dislocation given by

(w:] = H({i — SOYH({)H(1). C)

Then the displacement field in case of dislocation as given by (3) can be written from those of
(4). We note that no restrictions need be imposed on 5(t) except that it is monotone and
S©)=0.

The body force equivalents F with components (F,, F>, F;) in the ({1, {>, {3} coordinate
system for the dislocation given by (4) can be written as (Burridge and Knopoff[12]).

Fy=—-uH( - SONH(H)S (H(D,  F=0,
Fy =~ ud({, - SUNH(L)S(LH)H(1). )]

Roy{20] has given a general method of finding the surface displacements in an elastic half space
associated with arbitrary force system F. The use of two different cartesian coordinate systems,
one of which describes the source condition and the other is chosen such that it is perpendic-
ular -to-the .bounding surface, is found to be specially suitable for obtaining the displacement
field in case of dislocation across an inclined fault surface. Following[20] the transformed
displacement at the surface z = — & can be written as

(= h) =ip(—h)+ ts(— k) + iigu(— h), ©)
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where

i(-h)= fo Tu-h)e"dt,  w(=h)=u(xy,—h.1),

iooh = [ [ A S [ atsteen + me+ (264 207+ B, | e an

—h) = Beleemist | » 22 Y7 2 d¢éd
ig(—h)= fwfﬂw[Qf +2'q + plIB*) e, + ne,) - 2i(°+ 7 Xpe.1dédn,

C( €x — iExtny)=ish
wsii-h= [ [ g e deen @

where e,, e, and e, are unit vectors along x, y and z axes respectively, and

A =Dt + Epn — iGolp B=(Dg§+Em)(£-r%'-!;—|G
C = Dsn - Egt, D= Flmall + F*™ap+ Fsmals,
E= F;""'az, + sz“azz + f’;""'ag, G= F,""‘ag, + Fz’""an + ﬁ';""a;;,
L=+ 02+ p%la®)'?, (Re({p)>0), {s=(£+n>+p*B)", (Re({s)>0),
a’= (A +2u)le, B= ulo,
F(&.n)= 28+ 20+ ¥ ~ 4E + n){pls,
(i, B, By = I ] J' ) f ) f ) (Fy, F, Fy) e~ i®eirtsbpt g1, 42> d¢s dt. ®
0 Jw-wJ-w

A, 1 and o are Lame’s constants and density of the medium. Dp, Ds etc. are obtained from D
etc. after first changing over from variables (k, v, ) to (£ 7, {) through the relation

k £ cosA sinAcosé sinasind\ /¢
p|=A"" 11)= ~sinA cosAcosé cosAsind (n) )
s e 0 ~siné cos é I4

and setting { = — i{p and { = — i{s respectively.

The transformed surface displacement for the given dislocation can be obtained from (6)~(8)
after obtaining the values of Dp, Dg etc. for the body force equivalent as given by (5). They can
be shown to be of the form

N-P = J:: I. J’. _{_D_P( 2 ;P) eHEX+nY)=Z(B+ntepHadii-pr d¢ dn dr, (10a)
Ng= L - Jw 'r Q_f_'LP_( 2 ys' )ei(GXﬂY)—z(f’*-w‘ﬂ’m‘)‘ﬂ-w dé dn dr, (10b)

where

X=x~-8S(1)cos A, Y = y- S(7)sin A cos 6,
Z=h+8(r)sinA sin 8. (10¢c)

Complete expressions for P(§, ,p), Q& . p), kp etc. are given in Appendix 1. The terms kp,
ks etc. in the denominator arise due to H({;) term in (5). The apparent singularity at kp =0,
ks = 0 etc. could be avoided if we use Heisenberg’s delta function[21).

3. INVERSION

Evaluation of the integral of the type (10a) and (10b) will be done by Cagniard De-Hoop
technique. Following the method of Gekenheimer and Miklowitz[1] we make the De-Hoop
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transformation

§=%(qcos¢-wsin¢), n=%(q sin ¢ + w cos ¢), 03]
where

tan ¢ = %, R=(X*+Y}H'2,

The integration path which is along the real g-axis is deformed to Cagniard’s path, viz.

at = ar—iqR + Z(q*+ w?+ 1)'?,
at = ar - iqR + Z(q> + w* + a*/8Y)'?, (12

depending on whether we consider Np or Ni.

We note that in transforming from the real g-axis to the Cagniard’s path in the g-plane, as
remarked earlier, kp =0, vp =0 etc. in the denominator of (10a) and (10b) are not poles. On
performing the inversion, the surface displacement can be written as (see, for detail, Roy[22] in
a similar case)

w(—h) =up(—h)+us(—h) +usy(— h) +ugp (- h), (13)
where
u,(-h)==J: H@-r-pl V)l dr, (14)
pz(xz+ Y2+ zz)uz’
I =2 Ref'nM;( Na? + of + dP)'P dg (15)
' 5‘;,'!; . dp NG + o

j has the values P, S or SH;

d=1 forj=P
=alf forj=Sor SH]
and
Ve=a, Vs=Vgz=8
Also
o= [l 5]l
+ fo ' [H(:-f-g)—u(:-f-g(E‘,-;‘,)m)] H(%—f)xmdr, (16)
where
lar =~ 5-Re [ ’: Wms(qmum)cos ¥, an
and

2
'2 ; -
sin +

v+ 2\

Ispz= -;",‘;Re j_: %z +T«;r:/_ﬁl’))"]";:zos vdy a8)

Meaning of the different symbols used in (15)-(17) are given in Appendix 1.
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4. FURTHER REDUCTION OF THE SURFACE DISPLACEMENT

The surface displacements as given by (14) are written in alternate forms which are suitable
for further reduction. Thus

t=({2+ D)
wi-h=[ (H (G- Str)+ VAt =77 = &~ ¢21™)
-H({ - S(0) = [Vt =7 - L= L', de, 19
where i, {2, {5 are obtained from inverting (1) and setting z = — h. Thus

Li=xcosA+ysinA cosd— hsinA sin§,
{r=—xsinA+ycosAcosd—hcos A sin §, (20)

Lr=ysind+hcosd.

Note that from now on, unless otherwise stated, ({,, {», {3) refer to points on surface z = —h.
The region of support for the r-integration is bounded by the curve

M §1=8(n =Vt -7 - & - &7, 1
o (= S@O+IVit -1 - &= i7" (22)

Figures 2(a—d) show the curves I and II as r varies from 0 to (¢ — ({2 + £:2)"*/ V). The curve
I is a monotonic increasing function as r varies from 0 to (¢ — (&*+ &%)/ V). Curve II has
extremum at points where

% _ _ Vit -1)
e T YA @)
az ‘= _ 2+ 32
or S [V,Zt—'ri—{z =& (24)

Depending on the nature of the moving source, the curve II may have a single maximum at
¢1={h (or equivalently at =7} or ¢ =¢}) or both a maximum at {, = {} and a minimum at
Li={h* (e at r=20* or t =¢*). We consider an accelerating source, i.e. $§(r)> 0. In this
case it is easily seen from (23) if (31/37)> 0 i.c. if the initial velocity $(0) (in general greater
than V}) is such that (3{;/87)o > 0, then the curve Il has a maximum at {, = {} (7 = 7¥) (Fig. 2a).
While if (3)/a7)<0 ie. if the initial velocity $(0) (in general less than V)) is such that
(8¢1/37)% <0, the curve II has either no extremum as in Fig. 2(b) or both a maximum at {, = {%
and a minimum at {; = {}* (i.e. at 7=17F* or t=¢)*) (Fig. 2, d). In the latter case the
acceleration of the source must be rapid enough such that 32{,/ar* vanishes at least once in
0<r<t—({3+ )"V, While for a decelerating source (i.e. $(r)<0) the curve II has a
maximum at {; = £} if (3{,/37)o> 0 and no extremum at all if (3y/d7)<0.

From the above discussion and from Fig. 2(a—d) it follows that r as given by (22) is multiple
valued in {fi* <{, <{}i, when both {7 and {}* exist. The segments of the curve II are then
denoted by 7= 73 and 7 = 73 (<7p) for {; in ({1i*, {) and simply by 7 = 7;; for values of ¢, in
(&h, &) if only one maximum viz. {} exists. The rest of the segments of the curves I and 11,
where 7 is single valued. is denoted by r = 7.

In case of head waves (i.c. ugp) the nature of surface displacement depends critically on the
existence of the maximum x = x%, and minimum x = x$f of the upper curve of

vanish. Also we have

x=S(r)cosA = [{a(t ~ )= (h+ S(7)sin A sin 6)(;2— l)m}z_ (y - S(7)sin A cos 8)2]”2.

(25)



L
! L7 i

/

/

/
T N L
®)
T
T
'Q. g. §|f
()

/
/I
( ”
\ BT
N\
.\. 1;3— ——
i 4
ol - * o
KL g 5

(c)

N
-4 (SR VH ¥
()

Fig. 2. Region of support of I (a) A single maximum §;, exists, i.c. in case of a source with initial velocity
such that $(0)> V;; (b) No extremum exists; (c,d) Both a maximum ¢ and a minimum {5 exist ie. in
case of an accelerating source such that $(0) < V; and acceleration is rapid enough.

09L

AOY VaNIEvay



First motions from nonuniformly moving dislocations 761

Similarly ¢, = ¢}, and {, = {5 are the maximum and minimum, when they exist, of the

upper curve of

_ . . 12

6= Str) [" L ;3’] . (26)
-2

The division of the curves (25) and (26) into different segments (7 = 7gpy, T = 7gp2, T = Tsp3)
and (7 = 7g,, T = T2, T = Tp3) is done exactly similar to the curves (21) and (22).

On close examination of Figs. 2(a~d) and similar figures connected with the head wave we
can write the surface displacement as

u(—h)=up(—h)+us(—h)+usy(—h)+ugp(—h) 2N

where, for j= P, S or SH
L]
u,(—h) = [H({+ £§) — G(¢ — max™ ({F, (%))]fo H(t -7 %)x,- dr
—[G() -~ max™ (21, {2~ H(G - £) fo "H(1-1-L ) dr

- (G- min” @, £ - G- min” @ o8N [ H(t-r-E)udr o8)
73 i
and

usp(—h) = [H(x + x%) = G(x ~ max™ (x%p, x$p))]

xrm H(t - -r--g—(h + S(7) sin A sin 8) —1:-;15)"2)}1(%—5)]9. dr

1]
~[G(x -~ max™ (x%, x%p)) = H(x - x%))

x f bt H'(t —r —-g- (h + S(s) sin A sin 8) —1,-;‘,)'")11(%—5)19. dr

0
- [G(x —min™ (x38, x$p)) = G(x — min™(x%p, x%p))]

x f b H(t -1 -%- (h + S(r) sin A sin 8)(1-;,—0!%)'”)3(5_5)13,, dr

SP3 P

-8 +usy+ [H(L + {51) = G — max™ ({34, {30)]
7 12
xf H(l—-r—-f-:-—(h + S(7)sin A sin a)(zl,-;%) )H(%—g)xmdf

[4

—{G(£ —max™ (%, (%1))— H( - {%1)]
82 1
xf ! H(t—r—%—(h+$(r) sin A sin s)(F‘,-;‘,) u)H(%—E)lspzdr

0

- [G({y~ min™ ({31, (%1)) - G({;—min™ ({3, {%1))]
9 o 112
xf ’ H(t - ‘r-%-(h + S(r) sin A sin s)(g,—;’,) )H(%-f)lmdf. 29)

783

The fourth and fifth terms in (29) namely us, and us, denote the expressions on the r.h.s.
of (27) with integrand I replaced by 1sp\H(R/p — Bla) and Isp2H(R/p — Bla) respectively.
In (28) and (29) the following meaning is attached to the symbol:

G(1—max™ ({1, £7) = H@G - (NH(L) i = max™ (B, £f)
=H( - L) if £ = max™ ({h, &)

or {1 does not exist.

(30)

Similar meaning is given for G({;— min™ ({%, {}))) etc. Note the additional factor H(L;)
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whenever the starred member (viz. {% above) is to be considered. Also we have
G=1vie- - 60",

o= (a-n(&-1) Y- )" an

12
= i thl —(22"(32:1
(72

Meaning of different symbols in (28) and (29) are given in Appendix 2.

5. NATURE OF WAVE ARRIVALS

The part of the surface displacement as given by (28) includes, besides the contribution from
body waves namely P, S and SH wave at {; = +{) = [V * - .- 2] for j= P, S or SH or
equivalently at ¢ = ({2 + &2+ &)V = (x2+ y*+ h?)"2|V; the contribution from the conical
waves at

Gi=¢h(ore=t) and {,={h* (or t=¢1"),

(for ji = P, S or SH) at places where L; >0 and 7° > 0 respectively.
Similarly (29) shows that the head wave, SP, arrives at

_ 0 (x2+ yZ)IIZ 1 1 1/2
X=%xgp or t =—T-+ h(F;—?> R
while conical head waves arrive at x = x%p (or ¢ = t$p) and x = x3§ (or ¢ = t'$}) at places where
Lsp >0 and 8% >0 respectively. Head waves and associated conical waves arise due to the
presence of surface and are absent in an infinite medium.

Alternatively from (22) and (23), conical P or S waves can be regarded as the envelope of
elementary P or S waves as the source moves. Thus

{1 =Stry+ YD), 32)
S(r)

2+ D= Vit~ r)[l ——Vf—]m,
[S(r)P

represents the conical P or S waves at time ¢ for j = P or S, in terms of the parameter 7. The
representation (32) shows that the necessary condition for the existence of conical wave is that
S(r)> V;. This implies that the source must move supersonically with respect to the longi-
tudinal wave velocity of the medium in order to generate a conical P-wave. Similar remarks
hold for conical shear wave when the source must move supersonically w.r.t. the transverse
wave velocity. The regions of existence and arrival times of P, S and the associated conical
waves can be obtained easily by the intersection, with the surface z = —h, of the wave froats in an
infinite medium (Fig. 3a, b) which can be easily constructed by drawing the envelopes of elementary
P or S-waves as the source moves.

We note that {, = {3, {1 = {3 and {; = {31 or equivalently ¢ = t5°, ¢ = ¢t} and ¢ = ¢3* do not
represent any wave arrivals. This will be evident if instead of source at a depth h, we consider
dislocation starting from the free surface and find the displacement inside the medium. The
corresponding time arrivals are obtained from the present case on simply replacing 4 by z. In
that case it is easily seen that t = ¢5°, t =t and ¢ = t5* do not represent any wave fronts since
they do not satisfy the eikonal equation.

Phases expected at any station on the surface in case of non-uniformly moving sources
differ considerably from uniformly moving sources. This can be easily seen from a look at the
table below.
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P

(a)

Fig. 3. Wave fronts in an infinite medium. (a) The case of a source L moving nonuniformly with starting

velocity greater than the longitudinal velocity of the medium. P, S, CP and CS represent longitudinal,

transverse, conical P and conical S wavefronts respectively. (b) The case of a rapidly accelerating source L

starting with velocity less than the transverse wave velocity of the medium. P, S, CP,, CP,, CS,, CS;

represent longitudinal, transverse, first conical P, second conical P, first conical S and second conical §
wave fronts respectively.

In Table 1 Ro/po and R*/p* denote the values of R at =0 and r = 7%, respectively. The
condition for the existence of conical waves can be summarised as follows: for both an
accelerating and decelerating source, if the initial velocity is greater than the representative
velocity (i.e. longitudinal or transverse), first conical P, S or SP, wave always exist. Second
conical P, S or SP waves do not exist in case of a decelerating source. They are always
preceeded by first conical wave. They exist only in case of an accelerating source and when the
initial velocity of source is less than the representative velocity (i.e. longitudinal or transverse
as the case may be) and the acceleration is rapid enough.

In particular for a vertical fault plane (i.e. 8 = #/2) with the source moving with a constant
velocity V at an angle A to the strike direction, the arrival times and region of existence of
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Table 1. Phases expected at the surface in case of moving source

Supersonic Source

Non-uniform Uniform  Subsonic Region of
motion motion source existence
First conical P Conical P Lo>0
I4 P P All station
Second conical P .5 >0
First conical P Conical SP %>€» and Lgp>0
sp P sP R, B
M a
First conical § Conical S Ls>0
s S S All station
Second conical § rC >0
¢ ]
Second conical SP o >§- and 75>0
Rayleigh Rayleigh  Rayleigh All station

conical waves as obtained from (28) and (29) are found to agree with those of Roy[23], derived
in a different way.

6. FIRST MOTIONS

The expressions for the surface displacements as given by (28) and (29) are in the form of
double integrals over finite ranges. As such, computation of theoretical seismograms for any
dislocation model can only be done with the help of a computer. However some idea about the
nature of surface dispiacement can be made if one computes the first motion approximations to
the surface displacement near different wave arrivals which can be easily done by a limiting
process used earlier by Roy[22] in case of finite sources.

The surface displacement near P or S-wave arrivals is obtained, from (28) as

wi-h)= Lt f " I,H(:-f-%)y(m;}’,)df, 33)

t-s(pyl Vi1+6 JoO
where
Po=(x*+y*+ hH'2,
We first consider the case when the source is moving subsonically (i.e. initial velocity less

than S-wave velocity) then the surface displacement near P- or S-wave arrivals, as obtained
from (33),is

—h) = ) Py
uy(—h) :-«pif't/,w m{l}H (t v, ), (34)
iy

where

{I}=jump of I at t = gy(7) =1 +_‘%
]

_a h+ S(r)sin A sin &
G = ux(t; 7)R ’ (35)

and 7 is the rootof t —y(r) =t ~7~p/V; = 0.
We consider the case when the source starts with finite velocity. In this case, let S{(r) have a
Taylor’s expansion near r = 0. Then we have

I W P 411 ()
t-r 7 t v, [l ooV, ] (36)
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Then for sources moving initially with subsonic speed, the displacement near P or § wave
arrivals is obtained from (33)-(35) as

] '
oL D i) o
poV;

where

(38)

"(x2+ Z)IQ iRo
9o = th¢-a=“"‘"‘y—=;~

Po

In case the source is moving supersonically i.e. if the initial velocity is greater than P-wave
velocity, then for (£;5(0)/(psV;)) < 1, assuming again S(r) has a Taylor’s expansion near 7 =0
the surface displacement near P- or S-wave arrivals is again given by (37).

If S(+) has no Taylor's expansion near 7 = 0, then let §(7) has the following form near 7 =0,
namely

S(ry= Sr", S; = constant(>0)

N [t XY [ 1] (TR LE AR

(39)

If n>1, then (37) gives the surface displacement near r = po/ V; after setting S(0)=.0 in (37).
Let n <1, in this case initial velocity is infinite, i.e. S(0)—>® as ¢-»0+ and we have

el Do Sefi x
t—-7 7 t Vj+PoViT' (40)

In this case for {; <0, we get the surface displacement near ¢ = py/ V; from (33) as

‘in
(= h)= ((t Q)), WO ( - B @
Y7

In case the source is moving initially with supersonic velocity then for $(0){,/(poV}) > 1 or if
the source is moving with infinite velocity initially namely when S(r)= S¢7", n <1 then for
£1>0 i.e. at places where conical P- or S-wave exists, then surface displacements associated
with P- or S-wave are obtained from (28) as

w(-h)= f :‘ 1,5(:-7—{’,-,_) dr.

In this case the surface displacement near ¢ = py/V; cannot be obtained by the limiting
process described above.

The surface displacement near first conical P- or S-wave arrival, as obtained from third
terms in (28) and (29), is in the form

w(-h)= Lt f T LHL)H(t - e dr

totft+ Jopo

= Lt ell}mpH(t~$(rtDH(L,) “)
r:g:

€

2
E=drt + &)= 1= tf =S¥ (eF) 3

since ¢'(t¥) =0 and 17 = ¢;(=7).
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Hence from (42) and (43) we get as t - ¢+

1) - 1
w(- h)=?—[;},%;}){r’n—{lf},.,,.tf(t ~DH(L).

(44)

Similarly the surface displacement near the arrival time of second conical P- or S-wave is

given by 12 12
- ppmyl
u(—h) = ?_[;,(l(f_r‘;f)_],),.{l,},_,,.y(: — tMYH(x).

(45)

Near the cusp of t—¥(r) =t —1—-p/V; =0, where the two extremum r=r} and 7= +J*
coalesce, with the common value of ¢ and = being denoted by £, = respectively, the surface

displacements can be written as

6”3(""(:)”3 c c
(- h)=T¢,.—(;,c'ﬁnr{l,},.,,cH(r—tf H(rF).

In case of the head wave, the surface displacement near its arrival time is given by

_ - M. 4] - B._.E

wer(-h)= Lt J; LeH(t *sp(r))H(p a)d'r,

where "
lsp'-"ll'sp(o)“g"‘h 'l'!-a“lz) ,

in

R . ) 1 1
¢sp(*r)=-r+:!-+(h + S(7) sin A sin 6)(31—?) ,

and rgp, is the root of t — ¢gp(7) = 0.
Following Roy{22], (47) can be written as

usp(~ h) = (Gsr)f-o‘_.‘l;;;g fo ¥ (= tep — ep(r) + tsp) dr H(t ~ tsp)H (—f-.-f-g)
TSPV

where
34

2
o Re@s)(Gi-1)
Gsp = ~7R™ [R 2;_ 1)m_z]m,

. L Melampew)
Ew q,l;:—i (@1 togp + 1)
wgp =0

Exactly similar to the previous case we get

b

- 2
usp(= k) = 5(Garhrmo G EL (¢ ~ ter Har O (2 £)

when S(r) has a Taylor’s expansion near r =0 and

(l - tsp)("“)h'( n

usp(—h) = (Gsr)r-o—"('so'T)m—' m)H(L)H(t —tep)H (% - g),

when S(7) = Sor” near r =0 and

_XcosA+ysinAcosd

_ N U 6 N
L= a(xﬁz:’_yzfr +smA Slﬂ&(-E;-;!) .

(46)

47

(48)

49

(50)

61

(52)
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Exactly in a similar way the surface displacement near the arrival times of first conical head
wave is given as

AR Sl U 3 5 _ R*_B
use(- ) =5 L G- H(Ler HG - 800H (55 - 5). (53)

The corresponding result near the arrival times of second conical head wave is obtained
from (53) on replacing t%p, 7% and H(L) by t%%, 7% and H(7$p) respectively.

At places where the two conical head waves coalesce, the first motion approximation to the
surface displacement is given by

361°( - t5) " ¢ c
usp(—h)= y W(GSPLS,H(TSP)HU —tsp), (54)

where (t5p, 75p) are the common values of (35, t55 ) and (7$p, Tsp ) respectively at the cusp of
t = Ysp(r) =0 and ¢"(rsp) = (d*/d7*)i(7).

7. DISCUSSION

It is seen from Sections 5 and 6 that the surface displacements in case of a nonuniformly
moving source differ from those in case of a stationary source both in number of wave arrivals
and amplitude of different phases. Thus if w; (j=P, S or SH) be the surface displacement
associated with first motion of the P, SV or SH wave arrivals in case of a nonuniformly
expanding dislocation and {u;}, be the corresponding quantities in case of a stationary source,
then from (37)

u; = Mjlu;lo,
where, for j= P, S or SH
1 1

M= )
’ [1_:.3(0)] | _S©cos s
poV; Vi

where ¢ is the angle made by the radius vector joining the observation point and initial position
of the source with the direction of propagation.

Thus the effect of motion of the source is to multiply first motion responses by a scalar
factor M; which depends only on the initial velocity of the source. A similar factor M; was also
obtained by Savage{13] in connection with a source moving with uniform velocity. Since the
modulation factor M; is positive for subsonic source and the nodal plane determination depends
only on the sign of initial P motion, the motion of the source does not alter the nodal position.
As the first motion responses are uneffected by the acceleration or deceleration of the source,
to analyse the nature of motion one needs to study the amplitude of body waves after the first
arrivals.

In case of a source moving initially with infinite velocity, a change of pulse shape is
expected near body wave arrivals. Thus for a source moving initially with infinite velocity as
seen from Section 6, the surface displacement near P, SV or SH wave arrivals varies as
(t - pol V))'™H(t — po/ V;) while in case of a source starting with finite velocity it varies as
(t = pol V)H (2 — pol V;). In case of a source moving supersonically (i.e. $(0)> V;) conical body
phases appear and near their arrival time the surface displacement behaves as (¢ - t1)'2H(¢t -
t?) where 1}, is the time of arrival of conical phase.

We have presented a method for obtaining theoretical seismograms for a particular earth-
quake source model, viz. gliding edge dislocation, in which finiteness and nonuniform motion
of the source have been taken into account. As eqn (7) is valid for any arbitrary body force
system, the present analysis can be used to obtain the surface displacement in an elastic half
space for other realistic earthquake source model, viz. skew dislocation, etc. incorporating the
effect of actual motion of the source. Recently two dimensional dislocation models have been
used to explain accelerograph data of different earthquakes[9, 10, 15, 16). In case of two
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dimensional dislocations the surface displacements will be expressed in terms of a single
integral instead of double integrais as in the case of three dimensional ones. It is hoped to
compute theoretical seismogram in case of two dimensional dislocation source models in some
future publications. Comparison of theoretical seismogram, following the present analyses with
phases of an actual earthquake may give a better evaluation of the relevant parameters, viz.
length, rupture velocity etc. associated with faulting.
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APPENDIX 1
Meaning of different symbols used in (14) and (16):

a—-—A—’-— - i(a£2 2 21n2
M, (q.0) =7 F(f,n)[ 2s(fes +ne,) +i(26° +20° + a’lB%e, ],

Mg(q, )= ;‘_ﬁﬁ; {267 + 207 + a*IB7Née, + me,) ~ 2i(£2 + D) pe. ),

Mw(q.a)-?g:(%,;(m.-&,).
F(é.n) = Q2€ + 20" + a*1B'Y = 4&* + n)Nnls.
é=(qcosd-owsing), n=qsind+wcose,
lr=(@’+a+ 1'% {s= (@ +o’+a’IpH",
Ap=—2ifn cos A sin 8 + 2&Lp cos A cos 8 + 2nfs sin A cos 28 —i(n* + ) sin A sin 2.
Ag(€+ 1)) = —2ign{s cos A sin & + £(26% + 29 + a¥/B?) cos A cos §
+ 0262+ 20 + a*IB Y sin A cos 28 — ifs(29? + €2 sin A sin 25
Agy=—i(n?~ %) cos A sin § + ns cos A cO8 & + ién sin A sin 28 — &g sin A cos 28.
kp = £cos A +nsinA cos 8 ~ilp sin A sin .
kg = £COS A + 7 sin A cos & - i{s sin A sin 8,
vp= —£sin A + 71 cos A cos § — ifp cos A sin &,
pg=—£sinA +1cos A cos § —ilscos A sin 8.

Note that £, 7 as defined above is the same as £, 7 as given by (11) except for a factor pla.
The other symbols in (15) and (17) are as follows:

= fs[i(t - R+ Z((t -7V - pHa" cos ¢1.

a¥(t - 1) w2
Up=["—;f—" l] sin ¢,
R=[(x - S(r)cos A)* +(y — S{r) sin A cos §2]'2,

Z=(h+S(r)sinAsind), p=(R*+2H)"2,
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2s= ;;",[m — )R+ Z((t— 1= p¥BY "2 cos ¥),

o= g[FE-]"

i 2
Qsp) =’:%[(t ~7R -—zé%(mzxu m?sin® w)”’],
- 2 172
wsp1 = [(E(—t-—:sﬂ+'l) -l] sin ¢,

172
wsp(f)=r+§+z(§',-—',) .
m= (812__"1 XZ)IR

R [ 8t - T)z]m
| -1 .

meL

o (1_B\"_Bu-nZ

8-(1 ?) p’ ’
qsrf&‘p—!llg %%G'quﬁ.

_e(pu-17_ [a«-.ts,(f» o dpu-1P ] L,
wsp2 E!('—pa— 1)+ (—-—-——R +l) ] E,(——;;——- I) sin® §.

APPENDIX 2
In (28) L; (j = P, S or SH) has following values, dependmg on the nature of moving source;
(@) -1+ ;,S(O)I( Vo) if S(7) has Taylot's expansion near + =0 and $(0)> V;.
®) &y if $(0) is infinite and for a decelerating source.
(c) 7€, when both ¢} and {})" exist; (i.c. in case of an accelerating Source with initial velocity either equal to zero or
less than P or S velocity depending on having the value P or S) and 7€ denotes the common value of (+], 7).
The corresponding values of Lgp are:

i n
(a) -1 +$(o)[xcosA +ysina cos 8] sin A sin 8(35 ;1_!)

a(x*+y%)

(b) L 1 1\"” xcosA+ysinAcosd
—sinA slns(F; -;,) + 2+ v
(©) r$e.

Also lhe vnlues of L. are (a) 78 if {3 exists and (b) 7€ if both %, and {3t exist.
75, r$p and 75 denote the values of r where the function

2 173
Y1) = 'r+%, ¥o(r) = -r+?z—(F',—;1,)
n

R 1 1
¥sp(r)=r+—+ Z(—iz—?>

have vanishing first and second derivatives respectively.



